Home | | Maths 11th std | Exercise 9.6: Choose the correct answer

Differential Calculus - Limits and Continuity | Mathematics - Exercise 9.6: Choose the correct answer | 11th Mathematics : Chapter 9 : Differential Calculus - Limits and Continuity

Chapter: 11th Mathematics : Chapter 9 : Differential Calculus - Limits and Continuity

Exercise 9.6: Choose the correct answer

Multiple choice questions with answers / choose the correct answer with answers - Maths Book back 1 mark questions and answers with solution for Exercise Problems - Mathematics : Differential Calculus - Limits and Continuity

Differential Calculus - Limits and Continuity (Mathematics)


Choose the correct or the most suitable answer from the given four alternatives.

 

(1) 

 (1) 1 

(2) 0 

(3) ∞ 

(4) −∞

Ans: (2)


Solution


 

(2) 

 (1) 2 

(2) 1 

(3) −2 

(4) 0 

Ans: (3)


Solution


 

(3) 

(1) 0 

(2) 1 

(3) √2 

(4) does not exist

Ans: (4)

 

(4) 

(1) 1 

(2) - 1 

(3) 0 

(4) 2

Ans: (1)


Solution


 

 (5)  is

(1) e4 

(2) e2 

(3) e3 

(4) 1

Ans: (1)


(6) 

(1) 1 

(2) 0 

(3) - 1 

(4) 1/2

Ans: (4)


Solution


 

(7) 

(1) log ab 

(2) log (a/b)

(3) log (a/b)

(4) a/b

Ans: (2)

 

(8) 

(1) 2 log 2 

(2) 2(log 2)2 

(3) log 2 

(4) 3 log 2

Ans: (2)

 

(9) If , then the value of limx→0 f (x) is equal to 

(1)  -1 

(2) 0 

(3) 2 

(4) 4 

Ans: (2)

 

(10) 

(1) 2 

(2) 3 

(3) does not exist 

(4) 0

Ans: (3)


Solution


 

(11) Let the function f be defined by f (x)= , then


Ans: (4)


Solution


 

 (12) If f : R→ R  is defined by  for x R, then limx→3 f (x) is equal to

 (1) - 2 

(2) - 1 

(3) 0 

 (4) 1

Ans: (3)

 

(13)  is 

(1) 1 

(2) 2 

(3) 3 

(4) 0

Ans: (4)


Solution


 

(14)  If , then the value of p is 

 (1) 6 

(2) 9 

(3) 12 

(4) 4

Ans: (3)


 

(15)  is 

(1) √2

(2) 1/√2

(3) 1 

(4) 2

Ans: (1)

 

(16)  is

(1) 1/2 

(2) 0 

(3) 1 

(4) ∞

Ans: (1)


Solution


 

(17) 

(1) 1 

(2) e 

(3) 1/ e

(4) 0

Ans: (1)

 

(18) 

(1) 1 

(2) e 

(3) 1/ 2 

(4)  0

Ans: (1)


(19) The value of  is 

(1) 1 

(2) - 1 

(3) 0 

(4) ∞

Ans: (4)

 

(20) The value of , where k is an integer is

(1) - 1 

(2) 1 

(3) 0 

(4) 2 

Ans: (2)


Solution


 

(21) At x = 3/2 the function f ( x) = | 2x -3 | / 2x -3 is 

(1) continuous 

(2) discontinuous 

(3) differentiable

(4) non-zero

Ans: (2)


Solution


 

(22) Let f : RR be defined by  then f is

 (1) discontinuous at x = 1/2 

(2) continuous at x = 1/2 

(3) continuous everywhere 

(4) discontinuous everywhere

Ans: (2)

 

(23) The function  is not defined for x = −1 . The value of f (−1) so that the function extended by this value is continuous is 

(1) 2/3 

(2) −2/3 

(3) 1 

(4) 0

Ans: (2)


Solution


 

(24) Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f (3) = 12, then f(4.5) is equal to 

(1) [f (3) + f (4.5)] / 7.5 

(2) 12 

(3) 17.5 

(4) [f (4.5) − f (3)] / 1.5

Ans: (2)


Solution

 f is a constant function

 

(25)  Let a function f be defined by f (x) = x−|x|  / x for x ≠ 0 and f (0) = 2 . Then f is x

(1) continuous nowhere 

(2) continuous everywhere

(3) continuous for all x except x = 1 

(4) continuous for all x except x = 0

Ans: (4)


Solution


 

Tags : Differential Calculus - Limits and Continuity | Mathematics , 11th Mathematics : Chapter 9 : Differential Calculus - Limits and Continuity
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
11th Mathematics : Chapter 9 : Differential Calculus - Limits and Continuity : Exercise 9.6: Choose the correct answer | Differential Calculus - Limits and Continuity | Mathematics


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.